Stochastic initiation and termination of calcium-mediated triggered activity in cardiac myocytes.
نویسندگان
چکیده
Cardiac myocytes normally initiate action potentials in response to a current stimulus that depolarizes the membrane above an excitation threshold. Aberrant excitation can also occur due to spontaneous calcium (Ca2+) release (SCR) from intracellular stores after the end of a preceding action potential. SCR drives the Na+/Ca2+ exchange current inducing a "delayed afterdepolarization" that can in turn trigger an action potential if the excitation threshold is reached. This "triggered activity" is known to cause arrhythmias, but how it is initiated and terminated is not understood. Using computer simulations of a ventricular myocyte model, we show that initiation and termination are inherently random events. We determine the probability of those events from statistical measurements of the number of beats before initiation and before termination, respectively, which follow geometric distributions. Moreover, we elucidate the origin of randomness by a statistical analysis of SCR events, which do not follow a Poisson process observed in other eukaryotic cells. Due to synchronization of Ca2+ releases during the action potential upstroke, waiting times of SCR events after the upstroke are narrowly distributed, whereas SCR amplitudes follow a broad normal distribution with a width determined by fluctuations in the number of independent Ca2+ wave foci. This distribution enables us to compute the probabilities of initiation and termination of bursts of triggered activity that are maintained by a positive feedback between the action potential upstroke and SCR. Our results establish a theoretical framework for interpreting complex and varied manifestations of triggered activity relevant to cardiac arrhythmias.
منابع مشابه
Current concepts on ventricular fibrillation: A Vicious Circle of Cardiomyocyte Calcium Overload in the Initiation, Maintenance, and Termination of Ventricular Fibrillation
Based on recent experimental studies, this review article introduces the novel concept that cardiomyocyte Ca2+ and ventricular fibrillation (VF) are mutually related, forming a self-maintaining vicious circle in the initiation, maintenance, and termination of VF. On the one hand, elevated myocyte Ca2+ can cause delayed afterdepolarizations, triggered activity, and consequently life-threatening ...
متن کاملLife and death of a cardiac calcium spark
Calcium sparks in cardiac myocytes are brief, localized calcium releases from the sarcoplasmic reticulum (SR) believed to be caused by locally regenerative calcium-induced calcium release (CICR) via couplons, clusters of ryanodine receptors (RyRs). How such regeneration is terminated is uncertain. We performed numerical simulations of an idealized stochastic model of spark production, assuming ...
متن کاملReinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early afterdepolarization-induced triggered activity.
BACKGROUND Atrial fibrillation (AF) at times recurs immediately after termination of the arrhythmia. The mechanism(s) responsible for the extrasystole that reinduces AF is largely unknown. We hypothesized that abbreviation of action potential duration (APD) would permit very rapid rates of excitation, known to induce intracellular calcium loading, which in turn could promote delayed and/or earl...
متن کاملCalcium Sparks in Cardiac Cells in Silico
We simulate elementary calcium release events (sparks) in a single calcium release unit in ventricular myocyte. Previously developed and tested electron-conformational model of the stochastic dynamics of RyR-channels is integrated to the calcium dynamics model in the cardiac cell. This approach allows to observe RyRs opening/closing in details on the macromolecular level during the calcium dyna...
متن کاملCHANGES OF PERK AND CHOP PROTEINS IN ENDOPLASMIC RETICULUM OF CARDIAC MYOCYTES AND TNF IN DIABETIC WISTAR RATS FOLLOWING CONTINUOUS AND INTERVAL EXERCISE
Background: Physical activity plays a major role in the prevention of cardiovascular disease and diabetes, but the effect of intense activity on endoplasmic reticulum proteins and apoptosis and necroptosis in diabetic conditions is unclear. The aim of the present study was to investigate the changes of PERK and CHOP proteins in endoplasmic reticulum of cardiac myocytes of diabetic Wistar rats f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 3 شماره
صفحات -
تاریخ انتشار 2017